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We select the functions pi in the form 

p1 = --arIldz,, pa= -mx* (3.13) 

Then, as follows from (3.11)-(3.13), IA,=--r,(t), and the extremals z.(t) must be, as 
before, solutions ofthe Cauchy problem (3.7). The satisfaction of the transversalityconditions 
(3.9) is guaranteed, if we assume & = -dII[q (tJ/d.q(Q, A,= -_nrzr(tI). For the completion of the 
solution of this problem by the methods of the classical calculus of variations it is further 
necessary to prove that the control s.= --2, obtained provides the minimum of the functional 
(3.5). This had been proved using Theorem 1. 

The examples considered here show the effectiveness of the proposed design of optimal 
control of the motion of mechanical systems based on the use of the first integrals. 
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OPTIMAL CONTROL OF STEPWISE PROCESSES WITH PERIODIC CHARACTERISTICS* 

A.B. PIUNOVSKII 

The problem of optimal control of a stepwise Markov process with periodic 
characteristics that is not discontinuous with respect to probability is 
solved. The sufficiency of periodic Markov control strategies is proved, 
the optimality equation is obtained, and examples of the solution of 
practical problems are given. 

The construction of optimal strategies for the control of stochastic processes is a 
pressing practical problem. /l-10/. Besides stochastically continuous /l, 2, 5, 7-9/ and 
purely discontinuous /3, 4, 6/ models of controllable processes, problems in which the 
controllable stochastic process has a mixed character are of interest. In /l-10/ models with 
diffusion and intermittent components, and also with other interacting Markov processes were 
studied. One of the varieties of such combined models, including a chain with discrete time 
and a stochastically continuous intermittent process are considered in this paper. Problems 
of the optimal control of such system were investigated in /lo/ in a finite time interval. 
Here the problem of synthesis in an infinite time interval is considered on the assumption 
that all the characteristics of the controlled model are periodic time functions. 

1. Notation and definitions. A two-component Markov intermittent stochastic process 

(Ei* $)1) is considered here in an infinite time interval Z = IO,=). The component Et represents 
a stochastically continuous process, the jumps of the component Cp, appear at known instants 
T, 22, . . . . We denote by X the space of component &, and Y is the space of component states qPt 
that are finite or denumerable sets. The term state of the process (&,(Pt) at the instant 

*Prikl.Matem.Mekhan.,50,1,24-31,1986 
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tE I is understood to be the ordered pair (z,Y)E X X Y. The trajectories are understood to 
be infinite to the right and have a limit on the left. 

Assume that each pair (~,Y)E X X Y has a Bore1 set of admissible controls A (r, Y) 
specified. If at the instant t the process (&t,$,) takes the value (5, Y) I and the control 
aE A (z, y) is specified, then &,,(a, Y, t) is the rate of trmsition of the component g, from 
the state I to state zE X at instant t. In that case the rate of payoff at the instant t 
is em’Lfrt(~,y, a). Bereandbelow a>0 isthediscountingcoefficient.Below,onlyperiodicmodels for 
which &,z (a, y, t -I z) = & (a, y, t).and rt+c (z, Y, a) = rt (x, y, a) are considered. 

If (&,r_or Ipnr_,,) = (5, y) and the control a e A (5, y) is selected, then P,,, (a, s) is the 

probability of the component 0, passing from state y to state z~ Y. In that case the payoff 
at the instants nr is eVanr R(s, Y, a). 

Definition. The set 2 = (1, X,Y. A,h,r, P,R), where A 7 
X, 

&JXXYA (qy), is called a 

model. 
We denote by 

Definition. 

(Et,%) which puts 

(2,~): the trajectory of process (Et,Ipt) in the interval 10, tic I. 

The measurable mapping x, is called the strategy of the control process 
each trajectory (r, Y)d in correspondence with the point a = zc [(z, Y)o’lE 

A (ztryt), where (zt,Yt) is the state of the process at inStaM t. If the control depends only 
on time and the final state zc [(r,Y),,'] = cp (t, zt,yt) the strategy is called Markov strategy. 
The Markov strategy (MS) is called periodic, if cp(tfz, z,y) = cp(t,z,y). For a fixed strategy 
x we use the notation at = n [(r, y)ofl. 

Definition. 
Z 

The average payoff is called the estimate of the strategy n in the interval 

00 (r, y, n) = Mf,, vj <f e-% (B, 4% al) dt + 5 e-w? (k-o, h-O, %-o)> w 

0 n=l 

where (5, y) is the initial state of the process at the instant t = 0, M;., ,,) , which is the 

symbol of the expectation with respect to the measure p&r, in the space of trajectories of 
the process (Et,&) which begins from the state (r,Y) for a fixed control strategy II. The 
quantity 

VI2 (5 Y) = aup 00 (5, Y9 n) (1.2) L 

is called the estimate of the model Z. Besides model Z we shall consider a "derived model" 
Ztr (S) specified in the interval I’= it, T] with the final payoff S :X x Y+R'. Evaluation 
of the strategy and the model for Ztr(S) is henceforth denoted by the symbols mtr (r,y,n,S) 
and Q (G ?/I 4. If T = 00 and S = 0, these arguments are omitted. 

Definition. !che strategy n is called e-optimal, if ~~(2, y, n)> vo(r,y) -e for all 
(2, y) E x X Y, the O-strategy is called optimal. 

We shall assume that the following conditions are satisfied. 
lo. The functions h,,,(a,y,t) is measurable and uniformly bound with respect to all 

arguments. 

z". 2&Lz(a,y,t)=O 

3O. II sup 
a.SACr. If) 

lrt(GY,a)Ill+II sup aEA(xy)I~(r~Y14111<=J 

Here and below 

II ft (5, Y) II = tc[o,r),~~Pv)cuxrlft (2, Y) I; 1 fk Y) II =@ ;zxy Ifk Y)l 

2. Fundamental theorems. We introduce the following notation: 

0% (r, y) = e-Q% (5, Y, a) +,s lit. I (a, y3 t) gf (2, Y) 

E”g (5, y) = edT [R (my, a) + & P, z (a, z)g (z,z)l 

where g is a real function in [O,.r)x X x Y or X x Y, respectively. 
The basic mathematical results of the present paper are covered by the following two 

theorems. 

Theorem 1. For any e>O there exists a periodic e-optimal strategy. If A (5, y) are 
compacta, the functions r and R are upper semicontinuous in a , and the functions h and P are 
continuous in a, an optimal periodic strategy exists. 

Theorem 2. a) The evaluation of the model vt(s, y) for t<z is the unique absolutely 
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continuous solution of the equation of optimality 

c) the periodic strategy m*is optimal, if and only if for all (5, y)eX x Ywe have 

(d/at + Dot*) v, (& , $I) = 0, dt x P$: vj ’ - P. c * 

E”:-ouo (&r-o, %o) = VT-0 (ET-09 ko)~ P?c, U) - p.c. 

When solving problems of optimal control Theorem 1 enables us to confine the investigation 
to the class of periodic strategies. The numerical construction of optimal periodic strategies 
is made possible by Theorem 1. 

TO prove the theorems we require the following auxiliary constructions. 
Let m(y) be the set of all measurable function in d(s,y) from [O, z) x x . Each MS is, 

obviously, specified by the sequence ~fo,fI,...l, where f,, is the mapping which puts some element 

fn (Y) E cb (Y) in correspondence to each YE Y. The symbol (p" will be used to denote the 
sequence If,,, fn+l, . . .I, when cp = Ifo, fir . . .I. 

Let f be the mapping of set Y in Q, =r$p(D(y), such that f(y)E a(y) and u: X x Y+R’ 

is some uniformly bounded function. We shall denote by L(f) u (when t =O) the solution of 
the following Cauchy problem: 

(dldt + Df@)(t.q g, (r, y) = 0 (2.4) 

g, (I, y) = p(*-o. 2) u (2, y) (2.5) 

In addition to the operator L(f) we shall consider the operator Cl specified by the 
formula 

ua =,:W&"O a (2.6) 

Lemma 1. For any f:Y+Q, 
a) if u1 > IL*, then L(f) ul > L(f) uS and Uu, > Uu,, 
b) L(j) (u + c) = L(f) u + 6% and U(u+c)= Uu+e+c, where c is an arbitrary constant 

function specified in X x Y; 
c) the operators L(f) and U are compressive, and 

IIL cf) WI - L(f) uaII < e~rlI~l - ug ll ; II Uul - Uu3 II< 
t--=% II 4 - % II; 

d) for any e>O and any function u(r,y) a mapping f :Y-+O exists such that L(f)u> 

uu - e. 

Proof. Note that the matrix exp 8 A (j, y, 0) de) is a stochastic matrix /ll/. Hence the 
t 

statements a) and b) above follow directly from (2.4)-(2.6). Proof of c) above is identical 
with that in /3/. 

We set 
h(z, Y) = .A.-& L?k (59 Y) (2.7) 

It follows from the results obtained in /5/ that Uu(x,y) = voe (x. y, h). It was also proved 
there that for any fixed y there exists in model zig and e/&optimal MS f(y) (t, x). Moreover, 

in accordance with (2.7) we have '&* (z)= f (y)(Z - O;x):EO*u> h --&. Repeating this reasoning 

for all ye y we obtain the mapping f: Y+a. To prove the inequality L(j)u> Uu - e it 
is sufficient to note that w$(x,y,f(y), h) is the unique solution of (2.4) with initial condition 

g, = h (see /5/j. The lemma is proved. 

Lemma 2. Let cp = [fo, fl, . . .I be an arbitrary MS. Then 
a) *r (x, y, cp) = e-ant 00 (X, y, $7 

b) 00 (cp) = L (fo) . . . L (A,) 00 b+“‘+? 

Proof. statement a) above follows from (1.1) and the periodicity of the function %r. 
According to /5/, @tr (2, y,(p, Or-o) is the unique solution of (2.4) for f = f. with the initial 
condition g,(r,y) = %-O(z,y,cp). From a) it follows that 00(m) = L (fo) Oo(cP’). Continuing this 
reasoning, we obtain the required oo(cp) = L(jo) . . . L(f,) 00 (cp”“). 

Lemma 3. Letu*be a stationary point of the operator LT. Then for any f: Y+Q, L” (f) 
U*Z oo(f”), Here and below fm is the periodic strategy cp = [f, f, . . .l. 
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Proof. According to Lemma 2 oOp) = Lv) oofj"). Using c) of Lemma 1, we obtain 11 L(f)... 

L U) U* - wo(f-)~~<e--~(n+~)r~~ o~v-)_ u+ll___m~, which it was required to prove. 

ProOf of !cheorem 1. Let us prove that for any a> 0 in the model this is an a-optimal 
Ms. It follows from condition 3O that for any 6>0 there exists an N such that for n> N 
the inequality 

e*"T 
I 
~~~+II~~~“)lT1~~.~~~~lll~+ w3) 

*v + II A_ “) I R (5, Y* 4 I II)) G + 

holds. It is well-known* (*Piun ovskii A.B. Optimal control of a continuously discrete inter- 
mittent Markov process with complete information. No.4512-80, dep. in VINITI, 27.10.80. 
Moscow, 1980.) that in model ZoNr (0) there exists an e/3 optimal MS qI(t, z, y). Finally, 
for t> Nr we select the strategy cp,(t,z,y) so that the inequalities are satisfied. 

rt (5, y. 'P, 0, 5, Y)) > -o~~~zyl rt (3, y1 s) I - 6 42.9) 

R (5, y, ‘PI (nT - 0, I, Y)) > -=yg ,,' R (2, Y* a) I - 6 

Using the definitions (1.1) and (1.2) and inequalities (2.8) and (2.9) it can be readily 
shown that the NS ~(t,r,y), formed by functions 'pl and (~%,is e-optimal. 

TO prove the sufficiency of periodic strategies we note that vo(x,y)< u*(x,y), where u* 
is the stationary point of the operator U. Indeed, by virtue of c) of Lemma 1 and b) of 
Lemma 2 we have aa( L(j,)... L (j,) u* + e-a(n+l)r (II o. (cp) II + I( u* II ) < a* + e-a(n+l)r al u* II + 

II 00 (94 II 1 z u** Let L(f)u* > Uu+ -e', where e' = e(1 -e-a'). Th e existence of the mappingf 

follows from c) of Lemma 1. Using statements a) and b) of Lemma 1, the validity of inequalities 
L” (j) la* > u* - e is readily proved by methods of complete mathematical induction. By passing 
to the limit, we obtain oo(jm)> u* -e>vo-e, as required. Here Lemma 3 was used. 

The second part of the theorem is proved similarly. 

Proof of Theorem 2. We set A,, (5, y) = e-'J(n-*)r sup p X v. (2,~). According to Lemma 2, 
QC4(%l/) 

when t < T, we have vt (x, y) = v,~ (x, y,Q. The integral Eq.(2.1) for model Ztr (4) follows 

directly from the results obtained in /5/. The integral representations for~,+~ = LJ~)~(x,~, 

hb+nr) and v~(x,Y) = v~~~(~,y,Jz,,~) when (n - 1)7< EC a7 are obtained similarly. Statement 
b) is checked by substitution; the existence and uniqueness of a solution of integral Eq.(2.1) 
and similar ones are proved by the standard method of compressive mappings. The proof of 
c) is carried out using a) of Lemma 2 and the following identity: 

0, (.z, Y, s)= Ft (5, Y) + ME, y,<%-o&-o, I, x) -- 

Fr-0 (Lo, Y) + j N/de + oaol Fe (Es, I) de> @ < t) 
which holds by virtue of conditions 1, and 2 for any strategy n and arbitrary absolutely 
continuous function F,(z,y) on [O,r) x X x Y. For the function F,(x,y) the solution of (2.1) 
must be taken. 

3. Examples . The problem of controllable subsystem. Consider the divice capable of 
servicing requirements of two types stored beforehand in bunkers 1 and 2. Interruption of 
started servicing is forbidden, and the selection of recurrent demand is carried out by the 
person operating the control device. The time of servicing of the demand of any type is 
assumed to be exponentially distributed with parameter h. The guidance of the device operator 
by a higher-order subsystem consists of the following. At the beginning of each interval 
[O, 71, [z, 221; . . . an indication is received of which of the demands are to be served first (i.e. 
priority is assigned y = 1 or y = 2); at the end of the corresponding interval the device 
operator receives the payoff R or is punished by the penalty r, depending on whether he has 
been serving a more or less priority demand. Let p1 = 0.5 + Q and p, = 0.5 -p be the 
assignment probabilities of priority 1 or 2 , respectively (-0,5< q<O,5). For given ~,T,R, 
r, 4, c (the discount coefficient) it is required to determine the optimal behaviour of the 
operator of the control device, as the cumulative discounted payoff in an infinite interval. 

In accordance with accepted notation X = {1,2); Y = {1,2}, where &l = XE X denotes that 
the device is occupied by servicing demands of type z, and +,t = PE Y indicates that type y 
requirements have a higher priority. Let A (x,y) = {0,1), where a = 1 (a = 0), indicates a 
decision of switching (not switching) on the other bunker has been taken. Let &.(a,~, t)= 
(--1)X+ICluh; 

rf(x,Y, a)=O; 
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The equation of optimality (2.1) may be written in the form 

dldiut (2, y) = - s&{ah [vt (5'9 Y) - vt ($7 Y)l) 

r'= 2, x=1; I 1,x=2 %v= 
1 

R, x=y 

-r, X#Y 

(3.1) 

(3.2) 

Assume that 

v7-0 (1, 1) > V?-0 (2,1), v,-0 (112) < vl-0 (2,2) (3.3) 
It is possible to prove thatinthis case the solution of system (3.1) has the form ~~(5, 

Y) = 5-o (xv Y) (x = Y); Vt (xv Y) = e- kW) [VT_0 (2, y) - I+0 (X’, y)l +- VT-0 (x’, y) (5 # y). Substituting the 
expressions obtained for t = 0 into (3.2) and noting that for x#y we have IJ_~(x,~)= vz_, 
(x,y')- e-ar(R + r) , we obtain a system of linear equations for u7_, (1,l) and u,-o (2,2), 
from which v,_~ (1, 1) = AI/A; v,_o (2, 2) = A.lA. This reasoning holds only when inequalities 
(3.3) equivalent to the inequality 1 A1 - AS I<e”‘(B + r) A are satisfied, whose solution 
has the form 

(a + VT> ln(1 + 2 I!7 I) (3.4) 
The optimal strategy in this case is as follows: 

0, x=y 
‘P(hx,Y)= 1 x_+y 1, 

Thus when (3.4) is satisfied, the optimal strategy directs the fulfilment of incoming 
dispositions. 

If instead of (3.3)) the following hypotheses are considered: 

UT-0 (1, 1) > VT-0 (&I); &-o (1, 2) > v,-0 (2, 2) (3.5) 

UT-0 (1, 1) < h-0 (2, 1); G-0 (1, 2) < h-0 (2, 2) (3.6) 

then, using similar reasoning, we obtain the optimal strategies 

I 

0, x=l 

( 

0, x=2 
cP(hx*Y)= 1, %=2; ‘P(t*GY)= 1, x=l 

resepctively, and (3.5) is equivalent to the inequalities q> O;(a -I-~)T< In(l+ 2q) , and (3.61 
is equivalent to inequalities q<O; (a+h)zQ ln(l-2q). 

Consequently, the optimal behaviour of the control device has the form shown in Fig.1, 
where region a corresponds to the solution "accept for servicing only requests of the first 
type", region b to "carry out the incoming orders", and region c "to accept for servicing only 
a request of the second type". Line ACB of switching is given by the equation (a + h)r = 

ln (1 + 2 lrll). 
One channel SI4S with refusals. Consider a single-channel queuing system (SQS) into which 

a Poisson stream enters at a rate k(f)= b + d sin4 (at/z). Let us assume that the SQS has two 
modes of operation characterized by the rates of servicing p1 and pLa with pL1< pL2. The rate 
of loss related to servicing are r1 and rB in the first and second modes, respectively. Losses 
related to demand result in a penalty R. It is required to construct the optimal strategy of 
the system control, i.e. to show for each instant of time the best mode of operation of the 
SQS. 

The mathematical model of the system is the stochastically continuous controlled Markov 
process with periodic characteristics , which is a special case of the discretely continuous 
model investigated. 

In confirmity with the accepted notation X = {1,2), and Et= 1 indicates that the channel 
is free and & = 2 thatitisoccupied. Thecontrolspace A = {1,2} consistsoftwoelements: lthe 
first mode of operation, and 2 the second. Component Qt does not appear, i.e. Y = {1};R(z,y, 
a) = 0) and subsequently the argument y is omitted. The infinitesimal matrix is 

h(a,t)= 
-b-dsi$(<-) b+dsi$(-$) 

Pa --Pa II 

and the rate of payoff is 

0, x=1 
o - R (b + d sina (d/r)), x = 2 

The problem was solved for the following valuesof the parameters: z = l,a = 2, r, = 20, re = 
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120,R = 2,' pl = 20,~~ = iOO,b = 2,d = 10. The initial approximation for vO(x) was assumed to be 
zero. Equation (2.1) was solved by the iterative method, and the estimate of model no (s) 
was computed with an accuracy of 0.01. Curves of the estimate of the model and of the optimal 
control strategy are shown in Fig.2. It will be seen that the second mode of SQS operation 
should be selected in the interval (0,3;0,6]. 
of the incoming stream. Subsequently in the 
periodically repeated. 

This is explained by the increase--in -the intensity 
intervals /l, 2/, /2,3/;... the strategy is 

Fig.1 Fig.2 

4. Special cases. We shall consider some special cases of the general model of a 
controllable system defined in Sects.1 and 2. Let m(X) = 1;~ (5, y, a) = 0. IIere and below 

m(D) is the power of the final set D. The model investigatedis converted into a discounted 
Markov process of taking decisions /3/. In this case statements appearing in Sect.2 agree 
with known results. 

On the other hand, if we set m(Y) = l;R(s,y,a) = 0, the property of stochastic continuity 
is restored. Such models were investigated on the assumption that &,(a, t)~ AX,,: (a); rt(x,c)s 

r (2, a). It was shown in /I/ that in such models it is sufficient to restrict the investigation 
to stationary SQS cp(t,z)-_= q(t). This is in good agreement with Theorem 1, if one notes that 
any arbitrary real number may be taken as 7. 

Assume that m(Y) =l;R(s,y,a) =O but the process is not stationary. The model 
considered is an example of an important special case of controllable stochastically continuous 
intermittent Markov processes, namely of a model with periodic functions h,,,(a,t) and rt(z,a). 
This enables us to state thatinsuch models it is sufficient to limit the investigation to 
periodic strategies with the same period z. According to b) of Theorem 2 the evaluation of 
the model is a periodic exponentially damped function. 

The model investigated as z+-m converts into a stochastically continuous discounted 
controllable Markov process. The concepts of Markov and oeriodic control strateaies merae 
in the statements formulated in Sect.2,- and agree with the results obtained in /?/. d 

The author thanks G.E. Kolosov for his interest and advice. 
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ON UNIFORM LINEAR INVARIANT RELATIONS 
OF THE EQUATIONS OF DYNAMICS* 

A.S. SUMSATOV 

In a tangential stratification of the configuration manifold of a mechanical 
system, the submanifolds of its trajectories specified in local coordinates 
by equations that are linear and hcrnogeneous , with respect to velocities, 
are discussed. The local conditionsforthe existence of some of such 
submanifolds in a structural form are established. The results obtained 
are illustrated by examples taken from solid dynamics. 

1. Let qE R" be the Lagrangian coordinates of a holonomic mechanical system, T = 1/S 
(a (q) q’, q’) its kinetic energy, and F (q)E R" the generalized force. The equation of motion 
can be written in a form which can resolve in terms of accelerations, 

q.' = -pq., 9’) + F (1.1) 
or, when the velocity field q’ = f(q) is specified. 

(f, V) f = F (1.2) 
Here r(q) is the connectivity object (see /l/1, V denotes covariant differentiation, 

(E, rl) = EC)'; the repeating index is understood to mean summation from 1 to n. 

Definition. The relations 

'pl (4, 9') = 8, . . *t cpnl (9, !I’) = 0 (m Q 24 (I.31 
rank II acplaq, a(p/aq. (I = m 

form, in a certain domain of variation of the variables g and q’ an invariant ensemble for the 
system of differential equations q” = G (q,q’)E R*,if for each a = 1,,..,m the expression 

has the form 

(XW are the continuous functions). 
In the tangential destratification TM of the configuration manifold M of a mechanical 

system, Eqs.(1.3)define locally a certain submanifold. Under conditions (1.4), the integral 
curve of the equations of motion , which has a common point with this submanifold, lies on it, 
i.e. the given submanifold is integral. 

Let us consider the question of the existence,for Eqs.(l.l), of an ensemble of invariant 
relations of the form 

<%%- m+1r 0 = 0, . . ., <B, d> = 0 (m < n - 1) (1.5) 
where the vectors {L(q)} are linearly indepenent of each point, <g,q) = (aE,n). In doing so, 
we shall confine ourselves to studying two extreme cases: m=n--l and m=f. 

Theorem 1. Let F#O. An ensembleof the (n - I)-th invariant relations (1.5) exists if 
and only if the lines of force are geodesic lines of the Riemann manifold (M,(,>). For FI 0, 
the system has m* of such invariant ensembles. 

This theorem is a corollary of Theorem 3 proved below. For n=2, it is given in /2/. 
For F = grad U(q), the condition of the theorem is written analytically as 

*Prikl.Matem.Meklmn.,50,1,32-42,1986 


